Search Results/Filters    

Filters

Year

Banks



Expert Group









Full-Text


Author(s): 

MOHEBBI M. | BAGHERKHANI A.

Issue Info: 
  • Year: 

    2014
  • Volume: 

    4
  • Issue: 

    3
  • Pages: 

    361-380
Measures: 
  • Citations: 

    0
  • Views: 

    443
  • Downloads: 

    187
Abstract: 

In the area of semi-active control of civil structures, MAGNETO-RHEOLOGICAL (MR) damper has been an efficient mechanism for reducing the seismic response of structures. In this paper, an effective method based on defining an optimization problem for designing MR dampers has been proposed. In the proposed method, the parameters of semi-active control system are determined so that the maximum response of structure is minimized. To solve the optimization problem, the Genetic algorithm (GA) has been utilized. The modified Bouc- Wen model has been used to represent the dynamic behavior of MR damper while to determine the input voltage at any time step, the clipped optimal control algorithm with LQR controller has been applied. To evaluate the performance of the proposed method, a ten-storey shear frame subjected to the El-Centro excitation and for two different kinds of objective functions, optimal MR dampers have been designed. Then the performance of optimal MR damper has been tested under different excitations. The results of the numerical simulations have shown the effectiveness of the proposed method in designing optimal MR dampers that have the capability of reducing the response of the structures up to a significant level. In addition, the effect of selecting a proper objective function to achieve the best performance of MR dampers in decreasing different responses of structure has been shown.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 443

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 187 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2010
  • Volume: 

    19
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    98
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 98

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2005
  • Volume: 

    18
  • Issue: 

    1 (ISSUE NO. 75)
  • Pages: 

    37-43
Measures: 
  • Citations: 

    0
  • Views: 

    989
  • Downloads: 

    0
Abstract: 

Actuators and sensors are the main components of a robot. Although the production of MAGNETO-RHEOLOGICAL actuators based on Newtonian fluids is commercially developed, yet it still suffers from the sedimentation of magnetic particles under stagnation or time duration condition. Polymeric gels more or less combat these problems, but they have some limitations mainly lacking mechanical strength. The use of polymeric elastomers eliminates both of these faults and provides the potential for manufacturing a practical actuator with reasonable mechanical strength without any sedimentation of magnetic particles. Recently, these properties have generated some interests in performing research works on polymeric elastomer actuator. In this work, a MAGNETO-RHEOLOGICAL actuator based on silicon rubber containing NdFeB magnetic particles is invented and the effect of important parameters such as magnetic particles loading and intensity of magnetic field on actuator behavior with constant geometry is investigated. The results show that the sample containing 25phr magnetic powders is in closest agreement with the theoretical estimations.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 989

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    4
  • Pages: 

    553-572
Measures: 
  • Citations: 

    0
  • Views: 

    4
  • Downloads: 

    0
Abstract: 

In recent years, semi-active control has been introduced as a promising method for the seismic control of structures, potentially combining the benefits of both passive and active control systems. MAGNETO-RHEOLOGICAL damper (MR) is one of the semi-active devices and its dynamic model is expressed by the Bouc-Wen model. The sliding sector control (SSC) strategy as a robust control approach is a class of variable structure (VS) systems for linear and nonlinear continuous-time systems with a special type of sliding sector using a new equivalent sector control. The purpose of this study is to evaluate the effectiveness of the SSC strategy in determining the optimal voltage of MR at each step of time. For a numerical example, a three-story benchmark shear structure is considered subjected to normal (100%), high (150%), and low (50%) excitation levels of the El Centro earthquake. The results of the numerical simulations show that the semi-active control system consisting of the SSC strategy and an MR damper can be beneficial in reducing the seismic responses of structures. Furthermore, the efficiency of the SSC strategy is also compared against that of the fuzzy and clipped-optimal controllers. Comparative results of the numerical simulation confirm the robustness and ability of the SSC strategy.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 4

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    14
  • Issue: 

    10
  • Pages: 

    43-49
Measures: 
  • Citations: 

    0
  • Views: 

    870
  • Downloads: 

    0
Abstract: 

Hydraulic engine mounts are applied to the automotive applications to isolate the frame from the high frequency noise and vibration produced by the engine. It also designs to reduce the engine shake motions from the road distribution usually occurred at low frequencies. This implies that the stiffness and damping properties of the engine mount should be amplitude- and frequencydependent. In the semi-active engine mounts this task will be done by changing the mount parameters such as stiffness and damping. MAGNETO-RHEOLOGICAL fluids are used in the mounts to change their damping by applying the magnetic field. When the current is applied to the electromagnet and the magnetic field is present, the behavior of the MAGNETO-RHEOLOGICAL mount is changed by the MAGNETO-RHEOLOGICAL effects. In this paper, a prototype MAGNETO-RHEOLOGICAL mount was built and experimentally evaluated. Also, the mathematical model of the mount was developed to represent the dynamic behavior of the engine mount system. The model was numerically solved based on the prototype parameters and simulated in MATLAB. The experimental results were used to verify the model in predicting the mount characteristics.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 870

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    13
  • Issue: 

    2
  • Pages: 

    189-205
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    0
Abstract: 

In this study, the response of semi-actively controlled structures is investigated, with a focus on the effects of MAGNETO-RHEOLOGICAL (MR) damper distribution on the seismic response of structures such as drift and acceleration. The proposed model is closed loop, and the structure's response is used to determine the optimal MR damper voltage. A Fuzzy logic controller (FLC) is employed to calculate the optimum voltage of MR dampers. Drifts and velocities of the structure’s stories are used as FLC inputs. The FLC parameters and the distribution of MR dampers across stories are determined using the NSGA-II, when the structure is subjected to the El-Centro earthquake, so as to minimize the peak inter-story drift ratio and peak acceleration simultaneously. The efficiency of the proposed approach is illustrated through a twenty-story nonlinear benchmark structure. Non-dominated solutions are obtained to minimize the inter-story drift and acceleration of structures and Pareto front produced. Then, the non-dominated solutions are used to control the seismic response of the benchmark structure, which was subjected to the Northridge, Kobe, and Hachinohe earthquake records. In the numerical example the maximum drift and acceleration decrease by about 36.3% and 15%, respectively, in the El-Centro earthquake. The results also demonstrate that the proposed controller is more efficient in reducing drift than reducing acceleration.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    14
  • Issue: 

    4
  • Pages: 

    430-446
Measures: 
  • Citations: 

    0
  • Views: 

    52
  • Downloads: 

    12
Abstract: 

This study deals with the free vibration of the sandwich plate made of two smart MAGNETOstrictive face sheets and an electro-RHEOLOGICAL fluid core. Electro-RHEOLOGICAL fluids are polymer-based material that changes its viscosity under the applied electric field. A feedback control system follows the magnetization effect on the vibration characteristics of the sandwich plate when subjected to the magnetic field. It is assumed that there is no slip between layers, so the stress-strain relations of each layer are separately considered. Energy method is utilized in order to derive the five coupled equations of motion. These equations are solved by differential quadrature method (DQM). Results of this study show the rheology response of fluid in presence of electric field where the core gets hard and the dimensionless frequency increases. Also, the significant effect of thickness and aspect ratios and velocity feedback gain are discussed in detail. Such intelligent structures can replace in many of the systems used in automotive, aerospace and building industries as the detector, warning, and vibration absorber etc.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 52

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 12 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

WANG D.H. | CAI H.X.

Issue Info: 
  • Year: 

    2009
  • Volume: 

    18
  • Issue: 

    11
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    130
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 130

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    8
Measures: 
  • Views: 

    225
  • Downloads: 

    63
Abstract: 

MAGNETO RHEOLOGICAL FLUIDS (MRFS) ARE MATERIALS WHICH RESPOND TO AN EXTERNAL MAGNETIC FIELD WITH CONSIDERABLE CHANGE IN THEIR RHEOLOGICAL PROPERTIES. IN THIS PAPER, A NEW TYPE OF MRF WAS SYNTHESIZED BY DISPERSING CARBONYL IRON PARTICLES IN SILICON OIL WITH STEARIC ACID AS STABILIZER. RHEOLOGICAL PROPERTIES OF THIS SUSPENSION UNDER DIFFERENT MAGNETIC FIELD STRENGTH WERE STUDIED BY USING A ROTATIONAL RHEOMETER. EXPERIMENTAL STUDIES SHOWED THAT USING STEARIC ACID NOT ONLY ENHANCES SHEAR STRESS, BUT ALSO CONSIDERABLY IMPROVES THE SUSPENSION STABILITY.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 225

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 63
Issue Info: 
  • Year: 

    2015
  • Volume: 

    14
  • Issue: 

    12
  • Pages: 

    156-162
Measures: 
  • Citations: 

    0
  • Views: 

    886
  • Downloads: 

    0
Abstract: 

In this paper a new model is developed to describe the response of MAGNETO-RHEOLOGICAL fluids (MRF) in transient state. The models which are developed so far, cover the steady-state flow, or address the transient state, with step-wise input electrical current and constant shear rate. In this paper, a new model for transient state of MRF is developed in which the input electrical current is an exponential function in different values of shear rate. Due to the magnetic inertia caused by the inductance of the coil, the real magnetic flux density could not be step-wise. Hence, compare with the other models, this model is in well agreement with reality. To verify the presented model and study the fluid properties as input parameters, an experimental coupling is designed and fabricated. The coupling applies magnetic field perpendicular to shear direction, and measures the shear stress as a function of time. The results of the proposed model show acceptable agreement with experimental observations. According to experimental and theoretical results, the presented model is applied to a controllable torque coupling and acceptable results were obtained.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 886

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button